Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python NumPy

NumPy Intro NumPy Getting Started NumPy Creating Arrays NumPy Array Indexing NumPy Array Slicing NumPy Data Types NumPy Copy vs View NumPy Array Shape NumPy Array Reshape NumPy Array Iterating NumPy Array Join NumPy Array Split NumPy Array Search NumPy Array Sort NumPy Array Filter NumPy Random NumPy ufunc

Python SciPy

SciPy Intro SciPy Getting Started SciPy Constants SciPy Optimizers SciPy Sparse Data SciPy Graphs SciPy Spatial Data SciPy Matlab Arrays SciPy Interpolation SciPy Significance Tests

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler

SciPy Optimizers


Optimizers in SciPy

Optimizers are a set of procedures defined in SciPy that either find the minimum value of a function, or the root of an equation.


Optimizing Functions

Essentially, all of the algorithms in Machine Learning are nothing more than a complex equation that needs to be minimized with the help of given data.


Roots of an Equation

NumPy is capable of finding roots for polynomials and linear equations, but it can not find roots for non linear equations, like this one:

x + cos(x)

For that you can use SciPy's optimze.root function.

This function takes two required arguments:

fun - a function representing an equation.

x0 - an initial guess for the root.

The function returns an object with information regarding the solution.

The actual solution is given under attribute x of the returned object:

Example

Find root of the equation x + cos(x):

from scipy.optimize import root
from math import cos

def eqn(x):
  return x + cos(x)

myroot = root(eqn, 0)

print(myroot.x)
Try it Yourself »

Note: The returned object has much more information about the solution.

Example

Print all information about the solution (not just x which is the root)

print(myroot)
Try it Yourself »

Minimizing a Function

A function, in this context, represents a curve, curves have high points and low points.

High points are called maxima.

Low points are called minima.

The highest point in the whole curve is called global maxima, whereas the rest of them are called local maxima.

The lowest point in whole curve is called global minima, whereas the rest of them are called local minima.


Finding Minima

We can use scipy.optimize.minimize() function to minimize the function.

The minimize() function takes the following arguments:

fun - a function representing an equation.

x0 - an initial guess for the root.

method - name of the method to use. Legal values:
    'CG'
    'BFGS'
    'Newton-CG'
    'L-BFGS-B'
    'TNC'
    'COBYLA'
    'SLSQP'

callback - function called after each iteration of optimization.

options - a dictionary defining extra params:

{
     "disp": boolean - print detailed description
     "gtol": number - the tolerance of the error
  }

Example

Minimize the function x^2 + x + 2 with BFGS:

from scipy.optimize import minimize

def eqn(x):
  return x**2 + x + 2

mymin = minimize(eqn, 0, method='BFGS')

print(mymin)
Try it Yourself »